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Abstract

Gaming-as-a-Service (GaaS) has rapidly emerged to the industry of cloud
gaming. The power of GaaS lies on having one source code base with mul-
tiple users. Several systems were proposed to model GaaS. However, there
are no scalable and reliable models for such a service. The importance of
having such a model lies on having an Internet-scale platform able to pro-
vide flexibility of different types of games genre and lower the barrier of end
systems (i.e. mobile clients) while taking into consideration the probability
of excessive loads and failures. We present a Distributed Cognitive Resource
Allocation (DCRA) model to run mobile games on a large-scale distributed
system in which we have improvised a unique distributed hash table (DHT)-
based routing to expedite the messaging among servers and to minimize the
round trip delay to acceptable levels for the targeted mobile games genre.

In contrast to existing centralized models, DCRA scales with the in-
crease of mobile clients to handle high concurrent loads of clients’ requests
while providing a stable level of gaming experience. The results show that
DCRA is able to scale well by providing almost fixed throughput and delay
while increasing the clients requests load. Also, the system preserve its key
features while simulating failures.
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Lay Summary

Playing console and PC games on mobile phones has been an industry de-
mand in the last few years. However, mobile devices’ hardware and power
consumption limitations have made the process of migrating desktop games
to mobile devices difficult. We have designed a platform to mediate the chal-
lenges of handling the complexity of migrating a resource intensive games
design to devices with limited processing capabilities by using the aid of
remote servers (in the cloud).
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Chapter 1

Introduction and Review

1.1 Motivations

Mobile games have recently shared a broad market base due to its compet-
itive edge advantages such as context awareness, ubiquity, and personalisa-
tion [1]. Mobile gaming changed the gaming experience from offline single
player gaming to online large scale multiplier gaming. However, due to mo-
bile clients limited hardware specs compared to gaming consoles, mobile
gaming suffers from running rich resource intensive games that needs huge
memory and graphic processing.

To overcome this limitation, Gaming-as-a-Service (GaaS) has rapidly
emerged to the industry of mobile gaming by using the Internet cloud. This
approach eliminates the need of the mobile client to execute intensive game
components and extend the traditional mobile gaming model with addi-
tional components on the cloud. Several systems have been proposed to
model GaaS. However, there is no scalable and reliable model for such a
service. The importance of having such a model lies on using an Internet-
scale platform able to provide flexibility of different types of games genre
and lower the barrier of end systems (i.e. mobile clients) while taking into
consideration the probability of excessive loads and failures. We propose
to design, develop, and implement a Distributed Cognitive Resource Alloca-
tion (DCRA) model to run mobile games on a large-scale distributed system.
In contrast to existing centralized models, DCRA scales with the increase
of mobile clients to handle high concurrent loads of clients’ requests while
providing a stable level of gaming experience. The early results show that
DCRA is able to scale well by providing almost fixed throughput and delay
while increasing the clients requests load. Also, the system preserve its key
features while simulating failures.

We also provide an abstraction to simplify building mobile games in a
decentralized edge cloud setting. We present a language support that allows
developers to recast a mobile game design to its core functionality without
the need to build a full stack of distributed services from the ground up.
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1.2. Research Objectives

1.2 Research Objectives

GaaS has been introduced to mobile game industry to run games on both
cloud and clients. Providing the best Quality of Experience (QoE) to gamers
is the top priority. One of the techniques to provide such a service is to im-
plement a cognitive model. A cognitive model redirects game’s components
to be executed in a cloud and in a client rather than having them all exe-
cuted in the client or all in the cloud. Cognitive model learns what is the
best set of game’s components to be executed at the client based on its envi-
ronment. In this thesis, we try to increase the performance of the cognitive
model by expanding the client-server model on the cloud side to decentral-
ized system where many nodes on the cloud assist the client to handle the
most intense components of the game. Such model should provide no point
of failure (fault tolerant). Hence, there will be no bottleneck on one node in
the system. Finally, the throughput and round trip time (RTT) would scale
better in number of mobile clients and sequentially, the number of off-loaded
game’s components.

DCRA is built over an P2P overlay on the cloud [2]. Several problems
arise with such design choice. The biggest concern is RTT delay. Games are
very sensitive to RTT as it the most important factor in the QoE require-
ments. Hence, we have implemented various techniques to reduce the delay
as much as possible. These techniques include membership and caching
protocols. The typical life-time of any server in the cloud is unpredictable
and usually uncontrolled by the system designer. Hence, reliability is a con-
cern in such an environment. Lost or delayed requests result an immediate
game pause or even a game crash. Also, uneven distribution of work load
by some popular component might slow down the system. To address these
problems, we have designed DCRA to achieve the following objectives:

• Quality of Experience: The system should provide the user with QoE
properties: Responsiveness, fairness, and precision [3]. All these prop-
erties determine game playability and hence a certain QoE level. Au-
thors in [4] have defined these properties as the following. Responsive-
ness reflects the time the system need to act upon a user interaction.
It give the user sense of perception while playing the game. Fairness
is a measure of consistency among the various players in game’s state
for the same game session. Finally, Precision is a measure of the state
difference value between a client and server game states. All of three
measures should be maximized to obtain a better QoE level.

• Scalability: GaaS models vary in their architecture as distributed sys-
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1.2. Research Objectives

tems. To our knowledge, no GaaS model has solved the problem of
scalability. Also, the fact that users and resources are far apart, re-
quires the system to geographically scale. The system should scale out
gracefully with the increase of the number of mobile clients in terms
of throughput and RTT. Finally, the model should administratively
scale while spanning multiple independent organizations. If scalabil-
ity is not featured for any distributed system, there will be often a
loss in performance while the system scale up [8]. We have applied
various techniques to achieve scalability. First, distribution of single
computation task and spreading it across the node servers in the cloud.
Hence, avoiding single server to deal with all clients requests. Second,
by using asynchronous communication which hide the communication
latency. This allows the system to continue serving tasks while waiting
for a server’s reply for some other requests. Third, Caching. Servers
cache the replies for all the processed requests for certain period of
time. In case a request was lost, a server, A, will resend the request
again to server B. Since B has the reply cached for A’s request, it
will not deliver the request to the upper layers. Instead, it will serve
it from the cache. More details in Chapter 3.

• Availability (Reliability): In GaaS models, resources are shared in the
cloud. With resource sharing, a client will request to access these
resources at the same time, The system resources should be always
available. In other words, every request of any mobile client should
receive a reply from a server. Achieving availability is very hard in
distributed system in the face of failures and network delays [9]. We
overcome these failures by replicating the execution of a mobile client
over a set of server nodes. This technique is known as Process Re-
silience. The general idea is to mask process failure by replicating the
execution of a single process over a group of servers (resilience group).
Another advantage of Process Resilience is to obtain better perfor-
mance in terms of latency. A mobile client access time will be reduced
since it receives the first reply from any member of the resilience group.

• Fault Tolerance: The system should be tolerant to failures. Many
types of failures can affect the availability of the system. The most
common is the Fail-Stop failure where a server crashes and the other
servers detect its failure. To overcome this type of failures, we need
to detect the failure first. We achieve this by implementing a mem-
bership protocol so each server have a global view of all the other

3



1.3. Background and Literature Review

servers state in the system. Secondly, availability should be preserved
regardless if a set of servers are up or down. Again, we solve this issue
by Process Resilience by making sure that there is at least one server
node to respond to any client request. Other types of failures are
Byzantine failures which are arbitrary failures where servers or mobile
clients might produce malformed requests or replies. In gaming con-
text, cheating requests might be sent from clients to servers. We do
not cover such type of failures in this scope and we leave it as a future
work.

• Heterogeneity: The system should detect heterogeneity in hardware
specs of different mobile clients and network bandwidth for the infras-
tructure that they are running on. We plan to achieve this objective
by running reinforcement learning as partitioning algorithm to specify
how much computation should be offloaded to the cloud.

• Programmability: GaaS involves thousands of entities whose location
and behavior might vary thought out the lifetime of the system. Given
the changing conditions of the edge resources, such service demand
good interactive response and consistent data sharing. To meet the
challenges of decentralized cloud nature, we provide a middleware that
mainly supportmulti-consistency decoupled-coordination communica-
tion. We claim that it is the right abstraction for edge interactive
applications in a decentralized edge cloud setting. We also present
language support that allows developers to recast an edge application
design to its core functionality focusing mainly on the game logic.

1.3 Background and Literature Review

GaaS models define a game as a set of inter-connected dependent modules.
These modules include Input, Rendering, and Game logic [10]. Different
types of GaaS models are defined depending on the allocation of these mod-
ules on the client or the cloud sides.

Remote Rendering (RR-GaaS) model is the most popular model where
all the modules run on the cloud except the Input module. It has been
commercially adapted by many companies such as Onlive and Gaikai [11, 12].
The model sends video frames from the cloud to the client through the
Internet. Although the client hardware requirements are minimized, network
transmission and high cost motivated local rendering on the client side.
Authors in [13] study the effect of reducing the transmitted images bitrate

4



1.3. Background and Literature Review

over the QoE of the GaaS system. Although is it shown that the layered
coding performs better than direct coding in terms of QoE, however, the cost
of such change will affect the quality of the transmitted frames significantly.
RR-GaaS models suffer from finding a green energy solution for the client
complex computations without compromising the QoE of the user.

To address the problems with RR-GaaS and to benefit from the recent
mobile client’s hardware advancement, Local Rendering (LR-GaaS) models
were developed. The basic idea is to move the Rendering module to the client
side so the high burden of video frame transmission is eliminated. However,
finding an instruction set to transform all the games visual frames through
the Internet to the mobile client is an unresolved research problem [10].

To overcome the problems in both RR-GaaS and LR-GaaS, Cognitive
Resource Allocation (CRA-GaaS) was introduced [14]. The model keeps the
Input and Rendering modules on the client side but divides the Game logic
between the cloud and the client. CRA breaks a game into inter-connected
dependent components. The cognitive ability allows the CRA model to
optimally and dynamically finds the best selection of components to run on
the cloud to increase the quality of experience for the end users.

All the previous models share the features of GaaS models which include:
click-and-play, anti-piracy, development cost reduction, and cross-platform
gaming experience [15]. Game Genre plays an important role in the selection
of the GaaS model. For example, 1st-person shooting games where the scene
images changes on a high rate work best with RR-GaaS since the scene
variety and motion frequency are very high. On the contrary, 3rd-person
management games where the scene variety and motion frequency are low,
fit CRA-GaaS since the game logic is the most intense module such games.
Current browser games fall into LR-GaaS where all the rendering occurs on
the client side.

Although CRA seems to be the next GaaS generation, the current design
is a client-server design. As a result, it lacks the features of a real distribution
system such as scalability and reliability. In a client-server model, excessive
load on the server can slow down or break the system. In such a system,
the server acts as a bottleneck on the system.

From the software engineering perspective, centralized CRA lacks dy-
namic component execution where the components are argument-ed and do
return a value. As shown in Figure 1.1a, the current CRA model takes user
input only once before executing all the three components. However, in
(Figure 1.1b), the game is able to receive user input while executing compo-
nents 3, 5, and 4 on the cloud. Also, component 5 depends on the output of
game 3 and the user input. Hence, we expanded the cloud side implementa-
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tion of CRA to replace the client-server implementation to decentralized one
and therefore, there is no point of failure. DCRA overcomes the problems
of excessive load in CRA by building an overlay network in the application
layer to distribute the tasks of CRA. DCRA works under the assumption
that there is a stable connectivity between the mobile device and the cloud
with no interruptions. Dealing with temporary disconnections are left for
future work.

Different studies have defined and evaluated gaming QoE for the current
GaaS models [16–19]. In [16], the authors designed and tested an Ad-Hoc
Cloudlet GaaS system and tried to enhance the user QoE by optimizing game
video frames. Although, the trace driven simulation shows better QoE, the
paper did not solve the general RR-GaaS problems. In [19], the authors
propose “Cloud Fog” distributed system in which RR-GaaS systems may
offload high intensive computations to nearby nodes on the cloud. Hence,
enhancing QoE. The results were promising, however, authors showed with
preliminary results that optimization of geographic selection of servers is still
an open problem. In [17], authors tried to boost QoE using Lagrangian Re-
laxation (LR) time-efficient heuristic algorithm. The algorithm outperform
the existed server-centric and network-centric in which the selection of server
is decided by processing power delay and network delay, respectively. The
authors, however, did not investigate large scale deployment of there model.
In [18], the authors of [19] continue their work to enhance QoE for Massively
Multiplayer Online Games (MMOG). The authors applied the concepts of
caching and super nodes on the cloud to reduce the downstream delay time
as much as possible. The fixed requirements of such system requires stable
super nodes and does not guarantee fault tolerance against communication
failures.

To our knowledge, all the previous works lack the seamless abstraction
between the GaaS model and the developer code. The idea of designing
abstractions to make the process of implementing distributed systems is not
new. However, to the best of our knowledge, the research presented here is
the first to propose a general middleware for multi-consistency and decoupled
coordination communication for mobile gaming applications. We believe
that operation-based consistency along with runtime support is necessary
for such an abstraction. Of course, we derived inspiration and borrowed
many ideas from other researches. We hope that this work will influence
future research into designing better features for edge middlewares.

Many existing software systems solve a subset of the previous problems
but do not address the entire range of issues.

6
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1.4 Novel and Technical Contributions

In this thesis, we present Distributed Cognitive Resource Allocation (DCRA),
a novel end-to-end Gaming as a Service (GaaS) model, designed as a ubiqui-
tous game platform solution. Unlike previous solutions, DCRA is Scalable,
Available, Fault tolerant, and programmable model. DCRA leverages the
state-of-the-art distributed programming techniques to achieve these goals.

In particular, the novelty of DCRA is in how it uses traditional dis-
tributed hash tables, which are used typically as storage solutions, to dis-
tribute computation across many nodes. The properties of DHT solutions,
such as consistent hashing, allow us to store and recover computational state
easily, and this enables seamless mapping of stateful computation onto a dis-
tributed system with many compute nodes.

Our evaluation using a wide collection of heavy network bandwidth, fail-
safe, and QoE tests shows that DCRA meets the expected design goals and
has clear advantages over CRA models, especially when the cloud computa-
tion, bandwidth cost, QoE, and programmability requirements are impor-
tant. Moreover, DCRA imposes additional effort on the client considering
the diversity of its hardware specification, thus reducing the cloud over-
all cost. This makes DCRA very suitable for large scale gaming extensive
computational environment that combine client flexibility and cloud servers
computational power.
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1.4. Novel and Technical Contributions

Client Server

EXECUTE [1]

EXECUTE [2]

Request: EXECUTE [3,5,4]

EXECUTE [3]

EXECUTE [5]

EXECUTE [4]

Response: SUCCESS [3,5,4]

(a) Normal components execution (CRA).

Client Server 1 Server 2 Server 3

EXECUTE [1]

EXECUTE [2]

Request: EXECUTE [3]

Response: SUCCESS[3]

Request: EXECUTE [5]

Response: SUCCESS[5]

Request: EXECUTE [4]

Response: SUCCESS[4]

(b) Dynamic components execution (DCRA).

Figure 1.1: Execution of Game Components.
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Chapter 2

DCRA: Network Design

To achieve the previous objectives, a novel decentralized distributed system
is designed and implemented. The system is a collection of server nodes on
the cloud that appear as a single coherent system to the mobile client. The
server nodes group together to distribute execution of one task from the
mobile client perspective. Hence, Coordination between nodes is needed to
achieve correctness of the proposed system.

2.1 Game Decomposition

Every game is decomposed to set of dependent components. In a game con-
text, a component is a building block that differs from other components
in functionality [20]. Figure 2.1 illustrates the partitioning of a game com-
ponents between the mobile client and cloud. For example, component 3
execution depends on component 2 execution. Each component is stateless
where no global variables are shared. For the previous example, component
3 takes component 2’s output as an input and execute the code of its own be-
fore sending its output as an input to component 5. By supporting dynamic
component execution, it makes no difference for the client if components 3,
4, and 5 where executed on the same server node or in different ones. In
both ways, it is one hop distance to the client so there is no extra distance
for the client request to forward.

Figure 2.1: Game Components Partitioning.
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2.2. Overlay Network

2.2 Overlay Network

From networking perspective, DCRA is an overlay network over set of phys-
ical nodes on the cloud. A virtual ring topology constructed to assign an
incremental ID for each server. The ID range is from 0 to N − 1 where N is
the total number of server nodes. We have tested our system on a 95 nodes
on PlanetLab [21]. PlanetLab is an open global research network that is
consisting of 1337 nodes around the world. Although, we could have used
more nodes to test DCRA, a quick sanity test is performed on the 1337 and
showed that 95 are functioning correctly.

Figure 2.2 illustrates the naming of the server nodes in the overlay. For
the game shown in Figure 2.1, component 1 and 2 are executed on the client
side. The rest are executed in the cloud by sending EXECUTE commands
from the client to a random server node.

A0

A1

A2

AN−2

AN−1

EXECUTE

Figure 2.2: DCRA as an Overlay Network.

2.3 Membership Protocol

A Gossip-based membership protocol is implemented to obtain a global view
of the state of each node in the system [22]. We could have replaced the
whole membership protocol by a simple probe PING message before any
one-to-one communication but that would add an extra overhead and delay
to the system. Taking into consideration the requirements of GaaS and the
objectives of the system, a membership protocol had to be implemented
to have the aliveness state of any server node in the system at any time
instantly.
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2.3. Membership Protocol

To implement a membership protocol, each node holds an aliveness table
with nodeid, t last updated, and a heart beat counter. Regularly, each node
sends HEARTBEAT messages to log(N) set of random nodes by a gossip
algorithm (Algorithm 1). Upon receiving a HEARBEAT message, a node
updates the local aliveness table by increasing the heart beat counter by
one and setting the t last updated to the current local time.

1 repeat
2 count = 0;
3 repeat
4 count ++;
5 send message to random node;

6 until count == log(N) nodes;

7 until random number <= 1
k ;

Algorithm 1: Gossip Algorithm.

where k is a constant chosen arbitrary (4).
For node Y , to check if node X is alive, the current condition must hold

true:

time.time() − t last updated < T Fail (2.1)

where time.time() is the current local time and T Fail is a constant set
arbitrary to 3 seconds. The condition ensures that if a node X is alive,
there should be an update for X within the last 3 seconds. Node X can
be updated by HEARTBEAT messages from itself or by a DISTRIBUTE
message from another node.

The gossip algorithm sends DISTRIBUTE messages periodically (set to
3 seconds arbitrary) to log(N) nodes. The DISTRIBUTE message contains
the local heart beat counters for each node in the aliveness table. Upon
receiving a DISTRIBUTE message, the local heart beat counter for a node
is updated (by increasing the heart beat counter by one and setting the
t last updated to the current local time) only if Eq. 2.2 holds true. The
upper part of the condition guarantees that the remote update is more recent
than the local one. The lower part prevents the oscillation in the state of a

11



2.4. Routing/Naming

node when it dies.

[remote HEARTBEAT > local HEARTBEAT ]

AND

[(time.time() − t last updated < T Fail

OR

T Clean < time.time()−t last updated)], (2.2)

where T Clean is defined as:

T Clean = 2 × T Fail. (2.3)

The oscillation might occur when a node W dies but two other nodes
keep incrementing the heart beat counter for W node continuously upon
receiving DISTRIBUTE messages from each other containing a heart beat
higher than the local one. To prevent such a scenario, the lower part of the
condition guarantees that for a period of time more than T Fail and less
than T Clean, any of the two nodes will not accept an update for the W
node. This also means that after T Clean there will be no updates for dead
node unless it comes alive again since the only way to update its status is
to have a new HEATBEAT messages sent by W itself.

2.4 Routing/Naming

Routing of a game’s component is achieved by consistent hashing [23]. A key
is defined as the hash of the concatenation of GameID and ComponentID.
Each key is assigned a server node by

hash(key)%N (2.4)

where N is the total number of nodes. This will result a uniform distribution
from 0 to N −1. Consistent hashing ensures load balancing. Hence, If there
is K keys distributed across the system, consistent hashing ensures that
every node is assigned K/N keys. Although all keys are evenly distributed
across the system, some popular games might translate into highly executed
keys. We leave this problem as future work, however, it can be seen from
the Eq. 2.4 that by adjusting the keys concatenation into an independent
game string value, a more efficient load balancing can be achieved.

Each node is assigned an ID between 0 and N − 1. Naming is necessary
so each node can identify other nodes. This allow mapping between the

12
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node ID and the node address (IP and port number). General naming
solutions can prevent systems from scaling, but using consistent hashing, the
complexity of looking up a node is O(1). Traditional techniques are client-
server (Napster), broadcasting (Gnutella), and DHT (BitTorrent) [24]. The
client-server and broadcasting techniques proved not to scale. DHT look
up needs O(logN) operations to find a node which is still worst than O(1).
The only drawback for consistent hashing as method for Naming is the space
complexity for routing state stored in each node. The space complexities are
O(N) and O(logN) for consistent hashing and DHT, respectively. However,
for a system with hundreds of nodes, the space complexity difference is
negligible.

To our knowledge, we are the first to use DHT-based solution for fast
routing of remote executions. While DHT-based protocols traditionally used
to store and retrieve data, we used it to quickly execute and retrieve the out-
put of a remote execution. The traditional routing schemes (i.e. broadcast
and multicast) have already proved in the literature to set behind in terms
of speed and efficiency.

2.5 Process Resilience

Process Resilience for functions is what replication for data. It aims to
achieve availability and fault tolerance. To protect against process (nodes)
failures, we organize several identical processes to run in parallel in a re-
silience group with a resilience factor (Rf ) of 3 (two resilient processes plus
the original process). The resilience group is dynamic and determined with
the help of the membership protocol. It is set by finding the next two alive
nodes on the counter-clock wise direction of the ring. The purpose of this
operation is to abstract the execution for the client. The client does not
know how many server are executing its function or which server is replying
back. Figure 2.3 illustrates the execution of one game component where a
node sends 3 EXECUTE requests to 3 alive nodes and wait for NE replies.
NE is constant set by default to 1 but it can be adjusted by the game de-
veloper (1 <= NE <= Rf ) to control the Quorum size. If it is set to three,
Node A0 has to wait for all the three replies from nodes 5, 7, and 8. Hence,
better consistency but less availability.

Back to the game shown in Figure 2.1, components 3, 5, and 4 are
distributed based on the consistent hashing to three server nodes. Every
server replicates the received EXECUTE to Rf other nodes by sending
HINTED EXECUTE. Next, it waits for NE instead of Rf replies to min-
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A0

A1

A2

A5A7
A8

AN−2

AN−1

HINTED EXECUTE

Figure 2.3: Process Resilience: Node A0 sends Rf EXECUTE requests.

imize the latency. We have also tried to send the replies directly to the
mobile client by also sending the client address along with the EXECUTE
and HINTED EXECUTE messages to cut the latency even more. However,
due to UDP’s socket security, the routers in-between drop any UDP reply
with a different receiver (now sender) address.
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Chapter 3

DCRA: Software Design

DCRA is implemented fully in Python. To aid the design, development, and
troubleshooting, the implementation is divided to service layers where each
layer add specific functionalities to the system:

1. UDP layer:
Basic UDP sender and receiver are implemented in this layer. UDP
is chosen over TCP to avoid the TCP connection setup/termination
delay. UDP unreliability is masked by using a Request-Reply layer
and by using Process Resilience.

2. Request-Reply layer:
This layer adds some reliability to UDP by implementing request-reply
protocol over UDP. Three retries after the first request will be sent to
the receiver before considering it down. This would ensure some level
of reliability over UDP. A Client will add a unique header in front of
each request message to identify the request’s reply from the server.
The identifier is generated using local time, IP, and port combination
so it will be always unique. Consequently, the server will use the same
unique header in its reply so each reply is paired to a request.

A cache is implemented on the Server side of the protocol to hold
the replies for 5 seconds in case of a duplicate message was received.
A duplicate message can be detected by the unique identifier field
by searching the cache. The client timeout can be set also by the
application developers.

3. Wire layer:
This layer is implemented on top of the Request-Reply layer to add the
syntax for application-level commands. Some of the used Commands

• HEARTBEAT: used by the membership protocol to send alive
messages to the destinations

• DISTRIBUTE: used by the membership protocol to share the
local aliveness table

15



3.1. Fault Tolerance

• EXECUTE: Used by a client to execute a function on a server
node.

• HINTED EXECUTE: Used by a server node to hint off the exe-
cution to a proper node using consistent hashing

4. Main layer:
This layer use the Wire layer’s commands to build the logic of the
system. Each server nodes basically runs an infinite loop waiting to
receive a a request which it will offload to a separate queue upon
receiving to be processed. Hence, no requests will be dropped. To
ensure the asynchronous communication, Rf queues are used as buffers
for the process resilience operations. At the same time, Rf threads
always check for any tasks pushed in the queues. If any found, the
threads pop the tasks and serve them until there is no more tasks to
be done. Hence, The main loop is always available to receive a new
requests which increases the availability of the system.

3.1 Fault Tolerance

Although hardware failures probability is too low, it is still a major factor in
distributed system design in a large-scale systems [25]. DCRA handles Fail-
stop failures only. Fail-stop failures are the most common type of failures
in which a server node stops to respond. Fail-stop failure can be detected
by time-out event while waiting for a request’s reply. To make the system
tolerant to such failures, it has to detect and mask the failure. DCRA detects
the failure by using the membership protocol. The system is K + 1 tolerant
meaning that it can tolerate K failures for N = K + 1 servers. Hence, one
server node is sufficient to run the system. Masking failures mechanisms
depend where the failure may happen:

1. Server node failure:

At-least-once semantic: The system guarantees it will carry out an
operation at least once which is maintained using Process Resilience.
(exactly-once and At-most-once semantics are the other design vari-
ants). From the nodes in the ring perspective, the failure can occur:

• After HINTED EXECUTE command was sent: The node will
receive the reply from other member nodes in the resilience group.
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3.2. Evaluation

• Before HINTED EXECUTE command was sent: The request will
be sent to the successor of the failed node using the membership
protocol.

From the clients perspective: The request will timeout and a new
random server node will be selected.

2. Client node failure: The server is executing and holding system re-
source (Orphan computation). After rebooting, client kills all of its
processes (KILL command). The Cache on the server side will help to
reduce the duplication of processing client requests

As for masking message loss:

1. Request message is lost: Client’s request will time out and retry re-
quest will be sent with the same unique ID of the original request.
Even if the three retries failed, the EXECUTE command is always
idempotent which means that it is repeatable without any harm done
if it happened to be carried out before.

2. Response message is lost:

• If some replies are lost: Do nothing, other server nodes replies
will be received from the members of the resilience group.

• If all replies are lost: Retries with unique request IDs (idempotent
EXECUTE).

3.2 Evaluation

Various tests were performed to verify the ability of the system so scale while
preserving the requirements of GaaS. The tests simulate running games by
sending EXECUTE commands to the system and observe the statistics of
round trip time and throughput. For simulating purposes, each game’s
component is simulated by a loop of 1,000,000 iterations.

3.3 Performance Evaluation

This objective of the test is to measure performance on large scale deploy-
ment. The test reports the response time and throughput of the system
with low, medium, and high loads. In this test, an observer node sends
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START TEST request to multiple nodes on the system to start a test with
specific parameters. The parameters include: number of EXEUCTE re-
quests need to be send, retrial times for each EXECUTE request, pausing
time between any two EXECUTE requests, timeout for each EXECUTE
request, and the number of nodes to send the EXECUTE requests to. The
test has two variants:

3.3.1 Multiple Nodes Test

In this variant, the EXECUTE commands are sent to other random nodes
in the system as shown in Figure 3.1. Figure 3.2 illustrates the average RTT
for various tests. It is shown that the RTT scales with the increase of the
number of different nodes. However, it decreases as the number of nodes
increases. This shows that the cumulative RTT is saturating at a fixed
value. Cumulative RTT is the multiplication of the number of messages
with average RTT. To understand scalability in Figure 3.2, the cumulative
RTT would give almost a linear function in which the x axes is the increase
in the number of messages and y axis is the commutative RTT.

To have a better understanding of the RTT delay, it takes around 115ms
on average to execute the EXECUTE command locally on any server node
in the system. Adding 100-250ms for ICMP typical ping delay [26]. The
440ms sounds an acceptable delay from the system perspective. As for the
user experience, the 440ms falls into the QoE requirements for DCRA’s
games genre.
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Figure 3.1: Multiple nodes test.
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Figure 3.2: RTT for Multiple Nodes Test.
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3.3.2 Single Node Test

The previous test simulates DCRA in normal operation. DCRA acts as
CRA in the worst case in which there is only one server node in the system.
To simulate CRA, we oberved the performance while applying high load
on a single random node. As shown in Figure 3.3, Multiple server nodes
simulates the client nodes and send EXECUTE requests to the single node.
It is shown in Figure 3.4 that the performance is worse than the multiple
nodes test (Figure 3.2) as the number of nodes increase. This is expected
since all the EXECUTE commands are sent to one node in the ring. Hence,
filling the threads queues with a high number of tasks. This test also aims
to verify the correctness of DCRA in the worst case.
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Figure 3.3: Single Node Test.
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Figure 3.4: RTT for Single Node Test.

3.4 Catastrophic Failure Test

To verify the availability and the reliability of the system, A SHUTDOWN
request is sent to 20% of the server nodes to simulate a catastrophic failure
while sending EXECUTE requests to multiple nodes. The test should result
no significant drop in performance in terms of response time and throughput.
Figure 3.5 illustrates the scheme of the test. As shown in Figure 3.6, the RTT
decreased after the failure, however, DCRA still function correctly. Hence,
proofing the high convergence of its membership protocol. The system cover
fail-stop failures where nodes stops responding expectingly. Other failures
like Byzantine failures are not masked by the system. They are left for
future work.

3.5 Client Design

A common problem in managing resources in cloud computing is resource
allocation, where the problem is, how much resources should be reserved
for a process if the demand is variable at any time. Figure 3.7 shows the
possible solutions to this problem [27]. If the reserved resources are higher
than the demand there will be waste of the resources. On the other hand,
if the reserved resources are less than the demand, this might pause or halt
the game execution. Dynamic provisioning is a robust solution where it is
foreknown how much demand the client needs at any specific time. Hence,
proper resources will be reserved.

From client perspective, we try to find the best approach to split the
game’s components between the client and cloud. Due to the unpredictabil-
ity of network delay, the best split should be learned experience. Cognitive
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Figure 3.5: Catastrophic Failure Test.
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Figure 3.6: RTT for Catastrophic Failure Test.
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Figure 3.7: Dynamic Resource Allocation.

model should adapt to the variation of terminal’s resources and network
dynamics. The fact that network delay environment is not deterministic,
requires cognitive model that operate over by learning.

Learning can be categorized to supervised, unsupervised, and reinforced.
In supervised learning a feedback signal is required from domain expert. Like
supervised, reinforced agent this feedback is represented as a reward, not as
desired output or value. The reward help to generalize the client model
to adapt to different gaming setup environments such as processing power,
available memory, and network conditions.

In our cognitive model a partitioning coordinator is the core element
where the game’s components is redirected to either the cloud or the ter-
minal. This requires applying mathematical models that translates high
level performance [14]. However, these models are sensitive to the time-
varying application’s demand which exists in cloud gaming. We applied
reinforcement learning as a dynamic provisioning solution to the resource
allocation problem which saves a considerable amount of the terminal and
cloud resources since the partitioning coordinator decision is adaptable to
the variation of the terminal’s network and the cloud dynamics over time.
For example, sudden changes in the terminal’s network dynamics might
cause the network delay to increase and hence, it is not guaranteed that the
terminal will be able to host a game’s component it used to be able to host
in the past. Such a problem requires a partitioning coordinator model in
which the decision can be made on the fly.

This client model will provide the cognitive model with the following
properties:

• Partitioning on the fly: There is no need to train the cognitive model
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to adapt to the new network environment changes.

• Unified: There is no need train the partitioning coordinator for all
variations of network environment. The model will be able to find
a good trade off for partitioning the game component between the
terminal and the cloud to maximize the performance. Hence, this
client model is providing provisioning of quality assurance.

• Autonomous: No thresholds need to be set. This property allows the
model to generalize better on the long run.

• Adaptive: Learn from experience (trial and error). Hence, the training
can re-run without any additional programming [33].

3.5.1 System Architecture

We train the cognitive model by using reinforcement learning to make the
decision where to execute a game component by learning from experience.
The general goal is to maximize the throughput and minimize the delay.
To demonstrate the model, a set of state-action is defined with initially a
random probability value reflecting the probability of each action (An) for
each state (Sn). We may define the states as:

• S1: Set of components allocated in the cloud

• S2: set of components allocated in the terminal

• S3: The available resources for the terminal

• S4: The available resources for the cloud

and the actions:

• A1: Allocate component Cn on the cloud

• A2: Allocate component Cn on the terminal

For any state, there is an optimal action that has a maximum probability
Q(Sn, An) which is also referred to as an action-value or Q-function [34].
Figure 3.8 shows the scheme of the model. After an action is executed a
reward and a new state are observed. The reward is where the experience
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is being taken into account. If a positive reward is recorded (i.e. latency
decreased), then the action that has been just performed is a good action,
hence, its probability will increase. On the other hand, if a negative reward
is observed (i.e. bandwidth decreased), then the action is a bad action,
hence, its probability will decrease. Over time, the probabilities for all
the state-action pairs has been proved to converge [35]. Hence, a proper
action or placement of a game component will be set for each state of the
environment.

Figure 3.8: System Architecture (Partitioning Coordinator).

The longer the model runs, the better actions and performance will be,
since the agent is learning from its mistakes. Table 3.1 shows how the look
up table (LUT) for all the state-actions will be stored in the memory of the
cognitive engine on the client side. The output of the model is defined as
which action yield the best reward. Although the size of the LUT table can
get very large because all the combinations of states and the actions (curse
of dimensionality), we have applied some reprocessing techniques to make as
small and efficient as possible. One of these techniques, is dimenstionality
reduction where the range of delay is partitioned to finite set of a fixed
size. Although, preprocessing will cause loss of information, it will ease the
learning speed and significantly improves generalization.

The algorithm for the Agent to calculate the Q(Sn, An) probabilities:
where α is a learning rate constant (0-1) typically close to 0 to control
the speed of learning and γ is a discount factor constant (0-1) which is
typically close to 1 to weigh the future rewards. S′ is the state of client after
action [36].
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Table 3.1: Lookup Table (LUT) for DCRA Cognitive Model.

S1 S2 S3 S4 Action Probability (Q(Sn, An))

30 2 340 104 A1 .4

30 2 340 104 A2 .3

.. .. .. .. .. ..

1 Initialize Q(Sn, An);
2 repeat
3 Initialize Sn;
4 repeat
5 Choose An from Sn (maximum);
6 perform action An, record reward (R) and future state (S′n);
7 Q(Sn, An) =

Q(Sn, An) + α[R+ γ ×max(Q(S′n, A
′
n)) −Q(Sn, An)] ;

8 Sn = S′n ;

9 until;

10 until;
Algorithm 2: Partitioning algorithm

3.5.2 Assumptions

• Finite number of states: The agent is Markov Decision Process (MDP)
where there is finite number of states which yield to a problem with
generalization. However, many techniques can be performed to solve
this problem such as using approximation function using neural net-
works to have continuous range of state values. This is left as future
work.

• The best action is always the action with the highest probability
(greedy): This is not always the best solution in real world prob-
lems [36]. For example, the agent may choose a sequence of actions
which yield to bad rewards eventually. This is a well known problem
that can be solved by exploration from time to time by choosing a
random action.
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3.6 Client Evaluation

Python client simulator were deployed on PlanetLab and we ran the Par-
titioning Coordinator with all the components initially running locally. As
the agent starts learning, it will start offload game components, record the
reward, and observe the new state. Figure 3.9 illustrates a client setup. The
server list is provided for the client initially so it would offload components
to the cloud servers as discussed in Section 2.4. Figure 3.10 illustrates the
convergence of client partitioning for different parameters. It is shown that
the cognitive model has succeeded to convergence as time passes.
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Figure 3.9: Partitioning Coordinator.
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Figure 3.10: Progress of Learning and Convergence of Learning Measures.
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Chapter 4

DCRA: Middleware

Distributed Mobile gaming involves thousands of entities whose location and
behavior might vary thought out the lifetime of the system. The need for
building abstractions to build a distributed application for such a hetero-
geneous environment at multiple scales is an urging research area for the
next decade [27]. Currently, for each application, a full stack of services
needed to be implemented from scratch. Such services might be a key-value
store, coordination protocol, membership protocol, distributed objects, con-
sistency guarantees, and state synchronization. Developing a middleware
that works in changing and the mobile environment is a challenge. These
constraints force researches to develop new methods of coordination to be
more dynamic and decoupled. In such an environment, the middleware has
to automate and scale these services. Also, the middleware has to facilitate
services reuse across multiple applications domains. However, such automa-
tion may intensify complexity and affects applications correctness. Hence,
substantial proof testing is needed for such middleware. New middleware is
needed to be designed to reduce the burden on application designers. In such
large scale settings, this middleware will glue different services to provide
an adequate communication scheme.

4.1 Network Microservices

We use network microservices that consist of a collection of loosely-coupled,
independent, and deployable services to construct the middleware. These
services work together to store past data and meditate communication of
future data. The network microservices can be installed to run on a cluster
on the edge by the client premise or in centric-cloud.

We implemented a quorum based consensus algorithm to provide both
SC and EC to read/write operations based on algorithms described on [28–
30]. Quorum-based consistency protocols have flexibility in term of tuning
the strength of consistency among multiple replicas. In such a protocol,
each object is replicated in a quorum consists of N nodes. Each object is
associated with a vector stamp corresponds to the last modified logical time.
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4.2. Publish/Subscribe (Pub/Sub) Messaging

The larger the stamp is, the most recent the state of the object is. Write
operation needed to collect the approval of W nodes out of N . Similarly, a
read operation needs R votes out of N . W + R has to be more than N to
ensure read and write quorums intersect. Hence, a read operation will not
retrieve the stale state of an object. Also, W has to be larger than N/2.
Hence, no conflicts in write operations can occur. These two conditions are
satisfactory to the correctness of the protocol. Changing the settings of W
and R can provide different levels of consistency [29]. For example, setting R
to N can ensure that a read operation will surely see the last write. Hence,
strong consistency is guaranteed.

It is worth to note that the protocol does not provide any synchroniza-
tion. To force causality, developers have to use our provided distributed
locks. This behavior mimics distributed mutual exclusion and hence pro-
vide a close effect to linearizability.

4.2 Publish/Subscribe (Pub/Sub) Messaging

Pub/sub messaging is used as a form of an asynchronous reliable commu-
nication channel between client instances [31]. In such a model, subscribers
register their interest in a channel and subsequently, receive a notification
generated by publishers.

We avoided other means of communication. Namely, distributed shared
memory (DSM) model, message passing, and remoter procedure calls (RPCs).
They are not decoupled in time, space, and synchronization. Client or server
do not need to know about each other physical addresses. Instead, logical
addressing can be set up through the developer form the code base. Also,
the client and server do not have to communicate actively at the time to ex-
change information. Instead, messages can spread out lazily. Lastly, servers
and clients should not be blocked while receiving and send information, re-
spectively. Decoupling space, time, synchronization, increase the scalability
of applications. Hence, we felt that the Pub/Sub pattern fits as a mean of
communication for future data.

4.3 API and Language

To mediate the interaction between the developer’s intentions and the mid-
dleware services, we have designed an API library to reside on the client side.
It also abstracts the connection between the middleware language and net-
work microservices by only exposing objects or actions the developer needs.
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4.3. API and Language

The API mainly consists of:

• Thin Client: To attend the queue of outgoing requests passed by the
Interpreter.

• Thin Server: To attend the queue of incoming requests coming from
the network microservices cluster.

• Interpreter: To execute primitives and pass requests to the queue of
outgoing request in an asynchronous manner.

We have also designed a high-level language based on Lox language [32]
tailored specifically to communicate with middleware’s network microser-
vices. The interpreter hammers user’s program into a form that network
microservices can understand. In this subsection, we discuss concepts, and
design choices while writing the interpreter to meet the demands of the
proposed system.

We chose Python as an implementation language basically because it
is a widely used object-oriented language. Unlike scripting languages, less
functionality is hidden while coding. Also, object-oriented languages are
still the dominant way of organizing and encapsulating data. The source
code of the middleware language is similar to any other high-level language.
More like C family. It is summarized in Figures .1, .2, .3, and .4.

A program in this language is a series of declarations (Figure .1), which
are the statements that bind new identifiers or any of the other statement
types. Remaining statement rules produce side effects like reading input
or producing output but do not introduce bindings (Figure .2). The rules
of expressions that produce values are shown in Figure .3. Rules that a
developer needs to interact with the middleware’s network microservices are
shown in Figure .4.

The interpreting process is consisting mainly of a Scanner, Parser, and
an Interpreter. These three components construct a pipeline in which mid-
dleware network commands is produced from source code. The first step is
to scan (lex analysis) the source code to convert it to a sequence of Tokens.
Possible tokens values examples are a character, number, a string literal,
or identifiers. Parser constructs syntax trees from a flat sequence of tokens
generated in the previous step based on the grammar rules mentioned ear-
lier. Basic data types: Booleans, Numbers, Strings are supported. Various
expressions are supported: Arithmetic, Comparison and equality, and Log-
ical operators with the support of Precedence and grouping. Control Flow
and Functions are also supported. Classes and advanced data structures are
left for future work.
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For simplicity, the language is dynamically typed, no type checking is
done in compile time. Instead, it will be reserved for runtime. Also, we
left automatic memory management through reference counting or garbage
collection for future work. All the semantic insights are kept stored in and
a environment data structure to support variables binding and declarations
and to add relations to nested scopes.

Although the interpreter has a syntax error report mechanism, a user is
responsible for making sure that the written code if free of errors. The inter-
preter takes the source code to execute it immediately. The interpreter can
access local and global user’s code variables. Illustrated by the python ref
production rule in Figure .3. Hence, the language code can be written
seamlessly between the application logic components without the need to
deal with any external interfaces.
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Chapter 5

Conclusions

We have implemented a decentralized cognitive resource allocation system
to host a platform to run mobile games over the cloud. The system matches
the required objectives: availability, fault tolerance, and programmability
while maintaining scalability by applying various state of the art techniques.
The system shows stable performance on high load with an average RTT
around 400ms (2.5 requests per second) for a single mobile client. The
system’s performance evaluation shows that DCRA succeeds CRA in terms
of throughput and RTT.

To our knowledge, we are the first to use DHT-based key-value stores as
a routing technique and as a process resilience abstract which led DCRA to
satisfy the required delay objectives. Other approaches used in the literature
proved to slow up the total performance.

We, have also cover the heterogeneity of clients in edge computing ar-
chitecture through the separation of the logic of the application and needed
network microservices: data store, request-response protocol, consistency,
mutual exclusion and caching support. Finally, the system shows that with
proper design choices, mobile gaming can benefit from the distribution of
system services and use DCRA in real world mobile gaming on a large scale
deployment.
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Chapter 6

Future Work

Several challenges face DCRA and need to be addressed in order to make
it practical solution to Mobile gaming. We plan to address these challenges
later as a future work.

6.1 DCRA Bandwidth Cost

Problem: Minimize system generated traffic overheads without compromis-
ing user gaming experience.
Several studies has proven the significant amount of redundant traffic in
distributed systems generated traffic [5, 6]. Bandwidth cost, in contrary
to QoE, is not a tangible property to the player. Hence, It is unclear how
much mobile games generated redundant and unnecessary traffic that over-
charge the user data plan. Although a good QoE require the game to send
frequent updates, we try to find the balance point in which the player is
not being speed lowered or being overcharged because of the high volume
updates neither frustrated by its low updates.

Many techniques has been proposed in the literature to decrease band-
width cost. Authors in [37], designed learning model to detect and minimize
the cost by training using the sent TCP traffic patterns. Although the model
succeeded to capture short and long term data redundancy, the model does
not detect different levels of redundancy such as cloud-cloud redundant com-
munication. In [38], authors build a software cache in receiver TCP code in
which all packets are hashed for future detection of redundant traffic. This
is similar to DCRA cache in the sense of avoiding sending multiple replies
for the same request.

Throttling is the current business model for mobile data plans which is
replacing flat-rate plans [39]. In throttling, full bandwidth service is pro-
vided to the user until a certain threshold is reached. Once the threshold is
reached, a throttled bandwidth is provided to the user until the end of the
payment cycle. Hence, the study of the generated traffic assure no redun-
dant or unnecessary packets are being sent. DCRA provides a middleware
layer to break the dependency between a game implementation and the gen-
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6.2. DCRA Energy Consumption Cost

erated traffic. Hence, game data can be generated, collected, and studied to
understand the problem.

Since sending redundant and unnecessary gaming traffic may overcharge
the players, DCRA aims to prevent such overcharges by sending only neces-
sary data that aggregate the information of multiple packets. Further study
of decreasing the ”repair bandwidth” where a server while restarting from a
crash needs information (Bandwidth) from other peers about its state [40].
is also needed. Small GaaS design decisions affect bandwidth cost heavily.
For example, games usually transmit repeated packets to counter loss and
delayed packets. DCRA overcome this problem by applying several tech-
niques such as using UDP over TCP and using software caches at several
communication layers.

We plan to study the generated traffic out of DCRA and relate its factors
to the cost. Later we will build a model to predict the cost on the go. We
intend to apply machine learning prediction and classifying algorithms to
aid this purpose.

6.2 DCRA Energy Consumption Cost

Problem: Optimize game energy Consumption to increase mobile device op-
erational time without compromising user gaming experience.

One of the most important factor that led mobile devices to be the
most dominant mean of communicating is its efficient energy [41]. It has
been studied that battery time is the most important factor to select a new
mobile device while be compared to storage, camera, or any other mobile de-
vice specifications [42]. Advanced video games are computational expensive.
Hence, battery drains very fast while playing video games in comparison to
other mobile applications. The only solution to this problem is either to
extend the life time of mobile battery or to utilize resources in a smarter
way [43]. We argue that DCRA save mobile energy better than other GaaS
systems for the same environment settings by including the terminal pro-
cessing and memory usage information as part of the agent state in DCRA
partitioning coordinator.

Literature papers have a thorough studies of how to reduce energy con-
sumption cost in hardware, communications, protocols, and recently in In-
ternet applications. Authors in [44] studied the trade-off between energy cost
and QoS. They emphasis the role of routing protocol and load balancing of
achieving such healthy state of what they call self ware network (SAN). The
finding affirms the need of good routing and load balancing techniques such
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6.3. DCRA Gaming Quality Experience

ones as implemented in DCRA and assert the need of further study of how
to enhance these features. In [45], the authors study the need to apply en-
ergy cost reduction in all of the OSI model including the application layer.
Also, the user energy settings and selection history should be taken into the
account since the business environment of the cloud system might influence
these settings. Authors in [46] emphasis the importance of having a soft
state attached to each server in the cloud where an inefficient energy server
will delegate processing to an efficient energy server. Energy efficient server
is for example a device that is always ON.

In DCRA, We study energy consumption in terms of signaling, routing,
load balancing , and having soft states. We also plan examine the business
environment work flow of the user to balance QoE with energy saving.

6.3 DCRA Gaming Quality Experience

Problem: Analyzing the factors that affect gaming experience for DCRA and
measure QoE on the fly.

The interactive nature of mobile gaming and the fact that network condi-
tions are not perfect, led to the unexpected high response time while playing.
The importance of having better QoE for the user is to eliminate the bar-
rier between mobile gaming and console gaming. It is a vital information
for game designer so the game design can be enhanced. To understand the
factors that affect QoE, we study the client and cloud delays, the wireless
network delays, game genre, and game settings. To measure QoE, we ex-
amine the subjective rating of QoE for various variations of the previous
factors [47]. Later, we will build a model to measure the current gaming
experience based on the data we collect for the subjective test.
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DCRA Middleware’s
Language Syntax

Program .1 Declarations Rules.

program -> declaration* EOF ;

declaration -> funDecl

| varDecl

| statement ;

funDecl -> "fun" function ;

varDecl -> "var" IDENTIFIER ( "=" expression | read )? ";" ;
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DCRA Middleware’s Language Syntax

Program .2 Grammar Rules.

statement -> exprStmt

| forStmt

| ifStmt

| printStmt

| returnStmt

| whileStmt

| block

| loteosCommandStmt

;

exprStmt -> expression ";" ;

forStmt -> "for" "(" ( varDecl | exprStmt | ";" )

expression? ";"

expression? ")" statement ;

ifStmt -> "if" "(" expression ")" statement ( "else" statement )? ;

printStmt -> "print" expression ";" ;

returnStmt -> "return" expression? ";" ;

whileStmt -> "while" "(" expression ")" statement ;

block -> "{" declaration* "}" ;
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DCRA Middleware’s Language Syntax

Program .3 Grammar Helper Rules.

expression -> assignment ;

assignment -> python_ref | IDENTIFIER "=" assignment | read

| logic_or ;

logic_or -> logic_and ( "or" logic_and )* ;

logic_and -> equality ( "and" equality )* ;

equality -> comparison ( ( "!=" | "==" ) comparison )* ;

comparison -> addition ( ( ">" | ">=" | "<" | "<=" ) addition )* ;

addition -> multiplication ( ( "-" | "+" ) multiplication )* ;

multiplication -> unary ( ( "/" | "*" ) unary )* ;

unary -> ( "!" | "-" ) unary | call ;

call -> primary ( "(" arguments? ")" )* ;

primary -> NUMBER | STRING | "false" | "true"

| "nil"

| "(" expression ")" | python_ref

| python_ref | IDENTIFIER ;

python_ref -> "@" IDENTIFIER

function -> IDENTIFIER "(" parameters? ")" block ;

parameters -> IDENTIFIER ( "," IDENTIFIER )* ;

arguments -> expression ( "," expression )* ;
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DCRA Middleware’s Language Syntax

Program .4 Middleware Related Grammar Rules.

loteosCommandStmt -> loteosCommand ";" ;

loteosCommand -> assert | command

assert -> "assert" "(" command, consistency_level ")" ;

command -> read | write | remove | lock | unlock |

register | subscribe | publish

read -> READ "(" primary ")" ;

write -> WRITE "(" primary "," expression")" ;

remove -> REMOVE "(" primary ")" ;

lock -> LOCK "(" primary ")" ;

unlock -> UNLOCK "(" primary ")" ;

register -> REGISTER "(" primary ")" ;

subscribe -> SUBSCRIBE "(" primary ")" ;

publish -> PUBLISH "(" primary ")" ;

consistency_level -> SC | EC | MC ;
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