
Pointers∗

Nabil M. Al-Rousan
nabil@ece.ubc.ca

September 22, 2020

Objectives

In this handout, you will learn

• What pointers are

• How to use pointers

• Why we need of pointers

What is a pointer?

First, remember that a variable is defined as a portion of memory that stores a value. A pointer is a variable that
stores the address of another variable 1. It points at other variable; hence the name ‘Pointer’.

How to use pointers?

An address of a variable can be obtained by preceding the name of a variable with Address-of operator (&).
We can get value pointed to by a pointer directly using the dereference operator (*) This is done by preceding the
pointer name with (*).

The following code demonstrates how the two operators are used:

1 // 1) Since there is * in declaration, ptr
2 // becomes a pointer varaible (a variable
3 // that stores address of another variable)
4 // 2) Since there is int before *, ptr is
5 // pointer to an integer type variable
6 int *ptr; // Pointer Declaration
7

8 int x; // Declare variable x.
9 // Suppose the address of x is A1

10

11

12 // & operator before x is used to get address
13 // of x. The address of x is assigned to ptr.
14 ptr = &x; // ptr now points to x
15 // Suppose the address of ptr is F9
16 x = 10;
17 *ptr = 12; // stores 12 into int location
18 // pointed at by ptr
19

20 out<< *ptr << x
21 << ptr << &x
22 << &ptr;

Output

12 12 A1 A1 F9

Edit & Run

∗SAMS Teach Yourself C++
1http://www.cplusplus.com/doc/tutorial/pointers/

1

https://onlinegdb.com/SyT3lvq9I


Why Pointers?

0.1 Dynamic Memory: to allocate variable size memory at runtime using the heap.

1 int * x;
2 x = new int [5];
3 *(x+4) = 2;
4 cout<< x[4];
5 delete[] pointer;

Output

2

Edit & Run

0.2 Call by reference: Pass function parameters by reference2

When reference variables are used as formal parameters, this is known as Call/Pass By Reference.
Comparing: Value vs. Reference:

• Pass By Value

– The local parameters are copies of the original arguments passed in

– Changes made in the function to these variables do not affect originals

• Pass By Reference

– The local parameters are references to the storage locations of the original arguments passed in.

– Changes to these variables in the function will affect the originals

– No copy is made, so overhead of copying (time, storage) is saved

1 void f(int* p) {
2 *p = 10;
3 }
4

5 int main() {
6 int n = 0;
7 f(&n); // passes the address of n
8 // now the value of n is 10
9 cout<<n;

10 return 0;
11 }

Output

10

Edit & Run

2https://www.cs.fsu.edu/ myers/c++/notes/references.html

2

https://www.onlinegdb.com/Syi8wgscL
https://www.onlinegdb.com/SkFgPlj9L


0.3 Construct Recursive Data Structures3

1 struct node
2 {
3 int data;
4 node *next;
5 };
6

7 // This function prints contents of linked list
8 // starting from the given node
9 void printList(node* n)

10 {
11 while (n != NULL) {
12 cout << n−>data << " ";
13 n = n−>next;
14 }
15 }
16

17 int main ()
18 {
19 node *head = NULL;
20 node *second = NULL;
21 node *third = NULL;
22

23 // allocate 3 nodes in the heap
24 head = new node ();
25 second = new node ();
26 third = new node ();
27

28 head−>data = 1; // assign data in first node
29 head−>next = second; // Link first node with
30

31 second−>data = 2; // assign data to second node
32

33 // Link second node with the third node
34 second−>next = third;
35

36 third−>data = 3; // assign data to third node
37 third−>next = NULL;
38

39 printList(head);
40

41 return 0;
42 }

Output

1 2 3

Edit & Run

Erroneous Usage of Pointers

Listing 1: Pointer of type int should point at vari-
able of type int

1 int *p = 5; // Error

Listing 2: Address can not be assigned to derefer-
enced pointer or visa versa

1 int x, y;
2 int * ptr1, *ptr2;
3 ptr1 = &x;
4 ptr2 = &y;
5 *ptr2 = ptr1; // Error
6 ptr1 = *ptr2; // Error

3The arrow operator (−>) is a dereference operator that is used exclusively with pointers to objects that have members.

3

https://www.onlinegdb.com/rJe0wYxiqL


Listing 3: Integer can not be assigned to a pointer

1 int x;
2 int *p;
3 p = x; // Error

Listing 4: Address of a pointer can not be assigned
to another pointer

1 int x, y;
2 int * ptr1, *ptr2;
3 ptr1 = &x;
4 ptr2 = &y;
5 ptr1 = &ptr2; // Error

Listing 5: Address can not be assigned dereferenced
pointer

1 int x;
2 int *p;
3 *p = &x; // Error

Listing 6: Pointers must be initialized before they
can be used.

1

2 int *p;
3 cout <<*p; // Error

CheatSheet45

Table 1: Pointers, Parenthesis, and Math

Pointer Expression Memory Address Memory Contents

*p Yep Nope

**p Nope Yep

**p++ Incremented after value is read Unchanged

**(p++) Incremented after value is read Unchanged

*(*p)++ Unchanged Incremented after it’s used

*++p Incremented before value is read Unchanged

**(++p) Incremented before value is read Unchanged

*++*p Unchanged Incremented before it’s used

*++(*p) Unchanged Incremented before it’s used
p*++ Not a pointer Not a pointer
p++* Not a pointer Not a pointer

Table 2: Pointers and array brackets

Array Notation Pointer Equivalent
array[0] *a

array[1] *(a+1)

array[2] *(a+2)

array[3] *(a+3)

array[4] *(a+4)

Table 3: Pointers and Multidimensional Arrays
Consider pointer notation for the two-dimensional numeric arrays. consider the following declaration

int nums[2][3] = { {16, 18, 20}, {25, 26, 27} };

Pointer Notation Array Notation Value

*(*nums) nums[0][0] 16

*(*nums + 1) nums[0][1] 18

*(*nums + 2) nums[0][2] 20

*(*(nums + 1)) nums[1][0] 25

*(*(nums + 1)+ 1) nums[1][1] 26

*(*(nums + 1)+ 2) nums[1][2] 27

4https://c-for-dummies.com/caio/pointer-cheatsheet.php
5https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-array/

4


	Dynamic Memory: to allocate variable size memory at runtime using the heap.
	Call by reference: Pass function parameters by referencehttps://www.cs.fsu.edu/ myers/c++/notes/references.html
	Construct Recursive Data Structures The arrow operator ([columns=fixed]->) is a dereference operator that is used exclusively with pointers to objects that have members.

